TERMINATION OF LOG FLIPS FOR ALGEBRAIC 3-FOLDS

YUJIRO KAWAMATA
Department of Mathematical Sciences,
University of Tokyo,
Hongo, Bunkyo, Tokyo, 113
Japan
e-mail: kawamata@uts5.s.u-tokyo.ac.jp

Received 2 March 1992

1. Introduction

We shall prove that there exists no infinite sequence of successive log flips for algebraic 3-folds.

Let X be a normal \mathbb{Q}-factorial variety and B a \mathbb{Q}-divisor such that the pair (X, B) has only weak log terminal singularities (cf. [3] or Sec. 2 for the terminology). A log flip for (X, B) is a diagram

$$
X \xrightarrow{\phi} Y \xleftarrow{\psi} X^+
$$

consisting of projective birational morphisms between normal varieties such that

(1) $\rho(X/Y) = 1$, i.e., ϕ is not an isomorphism and for any two curves C and C' which are mapped to points by ϕ, there exists a positive number α such that $C \sim_{\text{num}} \alpha C'$,

(2) $\rho(X^+/Y) = 1$,

(3) $\text{codim Exc}(\phi) \geq 2$, where Exc denotes the exceptional locus,

(4) $\text{codim Exc}(\phi^+ \psi) \geq 2$,

(5) $-K_X + B$ is ϕ-ample,

(6) $K_{X^+} + B^+$ is ϕ^+-ample, where B^+ is the strict transform of B on X^+.

The resulting pair (X^+, B^+) is automatically \mathbb{Q}-factorial and weak log terminal. The main result of this paper is the following:

Theorem 1. Let X be a 3-dimensional normal \mathbb{Q}-factorial variety and B a \mathbb{Q}-divisor such that the pair (X, B) has only weak log terminal singularities. Then there exists no infinite sequence of successive log flips such as

$$
X = X_0 \xrightarrow{\phi_0} Y_0 \xleftarrow{\psi_0} X_1 \xrightarrow{\phi_1} Y_1 \xleftarrow{\psi_1} X_2 \xrightarrow{\phi_2} Y_2 \xleftarrow{\psi_2} X_3 \xrightarrow{\phi_3} \ldots
$$

where the first pair of arrows is a log flip for (X_0, B_0) with $B_0 = B$, the second is for (X_1, B_1) with the strict transform B_1 of B_0, the third is for (X_2, B_2) with the strict transform B_2 of B_1, and so on.

Shokurov [6] proved the following results:

(i) (Existence) For (X, B) as above with $\dim X = 3$ and for a projective birational morphism $\phi : X \to Y$ satisfying conditions (1), (3) and (5) above, there exists $\phi^+ : X^+ \to Y$ completing the log flip diagram.

© World Scientific Publishing Company
(ii) (Special Termination) There exists no infinite sequence as in Theorem 1 which satisfies \(\text{Exc}(\varphi_n) \cap [B_n] \neq \emptyset \) for infinitely many \(n \).

So it is enough to prove Theorem 1 under the additional assumption that \(\text{Exc}(\varphi_n) \cap [B_n] = \emptyset \) for all \(n \). By replacing \(X \) by \(X \setminus [B] \), we may assume that \([B] = 0 \), hence \((X, B)\) has only log terminal singularities.

The method of our proof is a combination of the use of the difficulty in [5] modified in [4] together with an inductive argument in [1]. The most important step is to find a universal constant \(q \in \mathbb{Z}_{>0} \) such that all the prime divisors on the \(X_n \) are \(q \)-Cartier (Lemma 7).

By the Log Minimal Model Program ([3]), the above results combined yield the following existence theorem of log minimal models. We note that, even in the case in which \(b_i = 1 \) for all \(i \), we need our new result, since log terminal singularities with \([B] = 0 \) may appear after divisorial contractions.

Theorem 2. Let \(X_0 \) be a 3-dimensional nonsingular projective variety and \(B_0 = \sum b_iS_i \) a \(\mathbb{Q} \)-divisor such that \(0 < b_i \leq 1 \) and the \(S_i \) are mutually distinct nonsingular prime divisors with normal crossings. Then there exist a pair \((X, B)\) of normal projective \(\mathbb{Q} \)-factorial variety and a \(\mathbb{Q} \)-divisor having only weak log terminal singularities, and a birational map \(f : X_0 \dashrightarrow X \) which is surjective in codimension 1, i.e., the image of the domain of \(f \) contains all the points of codimension 1, such that one of the following holds: \(B \) being the image of \(B_0 \),

1. there exists a surjective morphism \(\varphi : X \to Y \) with connected fibers to a normal projective variety \(Y \) such that \(\dim Y < \dim X \) and \(-(K_X + B) \) is \(\varphi \)-ample,
2. \(K_X + B \) is nef.

2. **Terminal Blowing-Up**

Let \(X \) be a normal \(\mathbb{Q} \)-factorial variety and \(B = \sum_{i=1}^N b_iS_i \), a \(\mathbb{Q} \)-divisor, where \(0 < b_i \leq 1 \) and the \(S_i \) are mutually distinct prime divisors. The pair \((X, B)\) is said to have only weak log terminal singularities (or to be weak log terminal) if there exists a projective birational morphism \(\mu : M \to X \) from a nonsingular variety \(M \) with a normal crossing divisor \(F = \sum F_j \) such that

1. \(\mu : M \setminus F \to X \setminus (\text{Sing}(X) \cup \text{Supp}(B)) \), so the \(F_j \) are the exceptional divisors for \(\mu \) and the strict transforms of the \(S_i \),
2. \(K_M = \mu^*(K_X + B) + \sum a_jF_j \) with \(a_j > -1 \) for all \(F_j \) which are exceptional for \(\mu \).

Moreover, if \(b_i < 1 \) for all \(i \), then \((X, B)\) is called log terminal. In this case, the above condition (2) also holds when \(\mu \) is replaced by any other resolution. In particular, there exists a \(\mu \) for which the \(F_j \) with \(a_j < 0 \) are disjoint. For such a resolution, we define the number

\[
e(X, B) = \# \{ j | F_j \text{ is exceptional for } \mu \text{ and } a_j \leq 0 \}.
\]

This number is well defined since there is no \(j \) with \(a_j = -1 \).
The discrepancy coefficient \(a_j = a(F_j) \) is determined by the discrete valuation \(v_j \) of \(C(X) \) associated with the prime divisor \(F_j \), and independent of the resolution \(\mu \). In this sense, we can define the discrepancy coefficient \(a(v) \) for any discrete valuation \(v \) of \(C(X) \) by \(a(v) = a(F) \) if the center of \(v \) on some resolution \(M \) is a prime divisor \(F \). If we have to specify \((X, B)\), we write \(a(X, B; v) \) instead of \(a(v) \). \(v \) is called exceptional if its center on \(X \) is not a prime divisor. Then we have

\[
e(X, B) = \#\{v|v \text{ is exceptional and } a(v) \leq 0\}.
\]

The following lemma is fundamental in the proof of the termination of flips or log flips.

Lemma 3. ([5], [3, 5.1.11]) Let \((X, B)\) be a \(\mathbb{Q} \)-factorial weak log terminal pair, \(X \xrightarrow{\sigma} Y \xrightarrow{\varphi} X^+ \) a log flip for \((X, B)\), and \(v \) a discrete valuation of \(C(X) \). Then

\[
a(X, B; v) \leq a(X^+, B^+; v)
\]

and the strict inequality holds if and only if the center of \(v \) on \(X \) is contained in \(\text{Exc}(\varphi) \).

Note that the same conclusions as in Lemma 3 hold for divisorial contractions.

\((X, B)\) is called terminal if \(e(X, B) = 0 \). In the case \(B \neq 0 \), we assume that \(b_1 \geq \cdots \geq b_N \). In this case, we define \(d(X, B; m_1, \ldots, m_N) = \#\{v|v \text{ is exceptional and } a(v) < 1 - \sum m_i b_i\} \) for nonnegative integers \(m_i \) with \(m_1 > 0 \), and

\[
d(X, B) = \sum_{m_1, \ldots, m_N} d(X, B; m_1, \ldots, m_N).
\]

Note that all the entries of the sum are finite and are 0 except a finite number of the \((m_1, \ldots, m_N)\). If \(B = 0 \), we set simply

\[
d(X) = \#\{v|a(v) < 1\}
\]

which is the difficulty of \(X \) [5].

Lemma 4. Theorem 1 holds under the additional assumption that \(e(X, B) = 0 \).

Proof. Let \(S_1^n \) be the strict transforms of the \(S_i \) on \(X_n \). We may assume that \(B = 0 \) or \(\text{Exc}(\varphi_n) \cap S_1^n \neq \emptyset \) for infinitely many \(n \), since we can otherwise replace \(X_n \) by \(X_n \setminus S_1^n \) for \(n \geq n_0 \) with some \(n_0 \). In the latter case, if \(\text{Exc}(\varphi_n) \cap S_1^n \neq \emptyset \) but no prime component \(C^+ \) of \(\text{Exc}(\varphi_n) \) is contained in \(S_1^{n+1} \), then \((S_1^n \cdot C^+) > 0 \) for any \(C^+ \), hence \((S_1^n \cdot C) < 0 \) and \(C \subset S_1^n \) for any prime component \(C \) of \(\text{Exc}(\varphi_n) \). Since \(S_1 \) cannot be contracted infinitely many times, there is a prime component \(C^+ \) of \(\text{Exc}(\varphi_1) \) contained in \(S_1^{n+1} \) for some \(n \). Since \(X_{n+1} \) is terminal, it is generically nonsingular along \(C^+ \). Let \(v \) be the discrete valuation of \(C(X) \) given by the order of zeroes at the generic point of \(C^+ \), and \(m_i \) the multiplicities of the \(S_i^{n+1} \) along \(C^+ \). Then

\[
a(X_{n+1}, B_{n+1}; v) = 1 - \sum m_i b_i.
\]
Since $a(X_n, B_n; v) < a(X_{n+1}, B_{n+1}; v)$ by Lemma 3, we have $d(X_n, B_n) > d(X_{n+1}, B_{n+1})$ if $B \neq 0$. If $B = 0$, then we have $d(X_n) > d(X_{n+1})$ for any n. Therefore, an infinite sequence of log flips is impossible.

The following theorem asserts the existence of a terminal blowing-up for a log terminal pair.

Theorem 5. Let (X, B) be a 3-dimensional log terminal pair. Then there exist a \mathbb{Q}-factorial terminal pair (V, B_V) and a projective birational morphism $\mu : V \rightarrow X$ such that

1. $\mu_\ast B_V = B$,
2. $K_V + B_V = \mu_\ast (K_X + B)$,
3. the number of exceptional divisors of μ is equal to $e(X, B)$.

Proof. Let $\mu_0 : V_0 \rightarrow X$ be a projective birational morphism from a nonsingular variety V_0 with a normal crossing divisor $F = \sum F_j$ such that $K_{V_0} = \mu_0^\ast (K_X + B) + \sum a_j F_j$ with $a_j > -1$ for all j. We take μ_0 so that the F_j with $a_j < 0$ are disjoint. Let $B_0 = \sum_{a_j < 0} |a_j| F_j$. Then $\mu_0^\ast B_0 = B$.

We apply the Log Minimal Model Program to the pair (V_0, B_0) over X ([13]). We construct a sequence of \mathbb{Q}-factorial terminal pairs (V_n, B_n) for $n = 0, 1, \ldots$ with projective birational morphisms $\mu_n : V_n \rightarrow X$ by divisorial contractions and log flips. We have to prove the following:

(i) if (V_n, B_n) is terminal, $\varphi : V_n \rightarrow V_{n+1}$ is a divisorial contraction with respect to $K_{V_n} + B_n$ over X, and if E is the exceptional divisor, then the discrepancy coefficient $a(X, B; E) > 0$, hence E is not contained in the support of B_n, and the pair (V_{n+1}, B_{n+1}) is again terminal,

(ii) if $K_{V_n} + B_n$ is μ_n-nef, then $K_{V_n} + B_n = \mu_n^\ast (K_X + B)$.

Then by Lemma 4, the sequence terminates after a finite number of steps, and we obtain the desired terminal blowing-up.

First, we prove (i). Let U be an affine open subset of X containing the generic point of $\mu_n(E)$. In the case in which $\dim \mu_n(F) = 0$ (resp. 1), let H be a general member of a very ample linear system on $\mu_n^{-1}(U)$ (resp. of the pull back by μ_n of a very ample linear system on U). Let $C = E \cap H$. By construction, we can write $K_{V_n} + B_n = \mu_n^\ast (K_X + B) + \Delta$ for an effective exceptional divisor Δ. Since $(\Delta \cdot C) < 0$, E is in the support of Δ, hence $a(E) > 0$.

If Δ is μ_n-nef, then $\Delta = 0$ by the Hodge index theorem applied on H, hence (ii).

3. **Proof of Theorem 1**

We shall prove Theorem 1 and the following two lemmas together by induction in 3 steps.

Lemma 6. Let (X, B) be a \mathbb{Q}-factorial log terminal pair which is not terminal. Then there exist a \mathbb{Q}-factorial log terminal pair (V, B_V) and a projective birational morphism $\mu : V \rightarrow X$ such that

1. $\mu_\ast B_V = B$,
(2) $K_V + B_V = \mu^*(K_X + B)$,
(3) the exceptional locus of μ is a prime divisor and $e(V, B_V) = e(X, B) - 1$.

Lemma 7. Let e be a nonnegative integer and c a positive rational number. Then there exists a positive integer q which satisfies the following condition: if (X, B) is a \mathbb{Q}-factorial log terminal pair with $e(X, B) = e$ and such that $a(X, B; v) \geq c$ for any discrete valuation v of $\mathbb{C}(X)$ with $a(X, B; v) > 0$, and if D is a prime divisor on X, then qD is a Cartier divisor.

If $e(X, B) = 0$, Theorem 1 is proved in Lemma 4, and Lemma 6 is trivial.

Step 0. Lemma 7 for $e(X, B) = 0$.

Proof. Let (X, B) be a \mathbb{Q}-factorial terminal pair such that $a(X, B; v) \geq c$ for any exceptional discrete valuation v of $\mathbb{C}(X)$. Let P be any singular point of X, and r its index of singularity, i.e., r is the minimum positive integer such that rK_X is a Cartier divisor at P. By [2], there exists an exceptional discrete valuation v such that $a(X, B; v) \leq 1/r$, hence $c \leq 1/r$. By [1, 5.2], rD is a Cartier divisor at P for any prime divisor D on X. Thus $q = [1/c]$! is enough.

Step 1. For a positive integer e, Theorem 1 for all pairs (X, B) such that $e(X, B) \leq e - 2$ implies Lemma 6 for all (X, B) such that $e(X, B) = e$.

Proof. Let (X, B) be a \mathbb{Q}-factorial log terminal pair such that $(X, B) = e$, and $\mu_0 : V_0 \to X$ the terminal blowing-up from a terminal pair (V_0, B_0) obtained in Theorem 5. If $e = 1$, then $(V, B_V) = (V_0, B_0)$ works. Otherwise, let us pick an exceptional divisor E_1 of μ_0, and apply the Log Minimal Model Program to the pair $(V_0, B_0 + E_1)$ over X for a sufficiently small positive rational number ε. By Theorem 1 for the case $e(X, B) = 0$, after a finite number of log flips, we have a divisorial contraction to obtain a pair (V_1, B_1) with a projective birational morphism $\mu_1 : V_1 \to X$ such that $e(V_1, B_1) = 1$, $\mu_1^* B_1 = B_1$, and $K_{V_1} + B_1 = \mu_1^*(K_X + B)$. If $e = 2$, then $(V, B_V) = (V_1, B_1)$. Otherwise, take an exceptional divisor E_2 of μ_1, and apply the Log MMP to $(V_1, B_1 + E_2)$, and so on.

Step 2. For a positive integer e, Lemma 6 for any \mathbb{Q}-factorial log terminal pair (X, B) such that $e(X, B) = e$, and Lemma 7 such that $e(X, B) = e - 1$ imply Lemma 7 in the case $e(X, B) = e$.

Proof. Let us fix a positive number c. Let q_1 be the positive integer corresponding to $e - 1$ and c given by Lemma 7. Let (X, B) be a \mathbb{Q}-factorial log terminal pair such that $(X, B) = e$ and $a(X, B; v) \geq c$ for any discrete valuation v of $\mathbb{C}(X)$ with $a(X, B; v) > 0$. Let $\mu : V \to X$ be the projective birational morphism from a \mathbb{Q}-factorial log terminal pair (V, B_V) with $e(V, B_V) = e - 1$ obtained in Lemma 6. Let E be the exceptional divisor of μ, and let $E' \to E$ be the minimal resolution. Let $-b = a(X, B; E)$. By assumption, we have $1 - b \geq c$.

Since $(V, (b + \varepsilon)E)$ is log terminal for a small positive rational number ε and $- (K_V + (b + \varepsilon)E)$ is μ-ample, it follows that E' is covered by rational curves. So there
is a movable rational curve C on E such that $\mu(C)$ is a point and $-3 \leq (K_E, C) \leq (K_V + E). C < 0$ for the strict transform C' by [3, 5.1.9] (cf. [1, 6.8]).

Let D be a prime divisor on X and D' the strict transform on V. Since q_1E and q_1D' are Cartier divisors, $s = (-q_1E, C)$ and $t = (q_1D', C)$ are integers. Since $(K_V + B_V). C = 0$, we have $0 < (1 - b)s \leq 3q_1$. Since $(sD' + tE). C = 0$, we have $s\mu^*D = sD' + tE$ and sq_1D is a Cartier divisor ([3, 3.2.5(2)]). Thus $q = \lfloor 3q_1/(1 - b) \rfloor! q_1$ works.

Step 3. For a positive integer e, Lemma 7 for any \mathbb{Q}-factorial log terminal pair (X, B) such that $e(X, B) = e$ and Theorem 1 such that $e(X, B) < e$ imply Theorem 1 such that $e(X, B) = e$.

Proof. Let (X, B) be a \mathbb{Q}-factorial log terminal pair with $e(X, B) = e$, and suppose that there exists an infinite sequence of log flips starting from (X, B) as in Theorem 1. If $e(X_n, B_n) < e$ for some e, then the sequence terminates by the assumption, so we assume that $e(X_n, B_n) = e$ for all n in the following. Then by Lemma 3, there is a positive number c such that $a(X_n, B_n; v) \geq c$ if $v > 0$ for any n and any discrete valuation v of $C(X)$. Thus there exists a positive integer q such that qD is a Cartier divisor for any prime divisor D on any X_n. By replacing q by its multiple with the denominators of the b_i, the coefficients of B, we may assume that $q(K_{X_n} + B_n)$ is a Cartier divisor for any n, hence $a(X_n, B_n; v) \in (1/q)\mathbb{Z}$ for any v.

Let v_1, \ldots, v_e be discrete valuations of $C(X)$ such that $a(X, B; v_j) \leq 0$. If there is a j and n such that the center C_{jn} of v_j on X_n is contained in $\text{Exc}(\phi_n)$, then $\sum_{j=1}^e a(X_n, B_n; v_j)$ increases by Lemma 3. Then it cannot be repeated infinitely many times, so we may assume that the C_{jn} are not contained in the $\text{Exc}(\phi_n)$ for any j and n. Thus $|a(X_n, B_n; v_j)| = c_j$ is constant on n. Suppose that $c_1 \geq \cdots \geq c_e$. We may assume that there are infinitely many n such that $C_{1n} \cap \text{Exc}(\phi_n) \neq \emptyset$, because we can otherwise replace X_n by $X_n \setminus C_{1n}$ for $n \geq n_0$ with some n_0, and reduce it to the case in which $e(X, B) = e - 1$.

As in the proof of Lemma 4, we have $B = 0$ or there are prime components C^+_n of $\text{Exc}(\phi^+_n)$ contained in S^{*+1}_n for infinitely many n. Let b_1 be the maximum of the b_i if $B \neq 0$. We set $b_1 = 0$ if $B = 0$. Since there are only a finite number of discrete valuations v of $C(X)$ such that $a(X, B; v) < 1 - \max\{b_1, c_1\}$, we can define

$$\Delta_n = \{v | a(X_n, B_n; v) < 1 - \max\{b_1, c_1\}\}$$

$$d_n = \# \Delta_n$$

$$\sigma_n = \sum_{v \in \Delta_n} a(X_n, B_n; v).$$

In the case in which $b_1 \geq c_1$, if C^+_n is contained in S^{*+1}_n, then $d_n > d_{n+1}$ or $\sigma_n < \sigma_{n+1}$ as in the proof of Lemma 4. Since $\sigma_n \in (1/q)\mathbb{Z}$, d_n will decrease eventually also in the latter case. Therefore, the infinite sequence of log flips is impossible in this case.
In the case in which \(b_1 < c_1 \), if \(C_{1,n} \cap \text{Exc}(\varphi_n) \neq 0 \), let \(\mu : V \to X_{n+1} \) be the terminal blowing-up obtained in Theorem 5, \(E_1 \) the exceptional divisor corresponding to \(v_1 \), and let \(v_0 \) be the discrete valuation given by the order of zeroes along a prime component of a fiber of \(E_1 \to \mu(E_1) = C_{1,n+1} \) over a point in \(C_{1,n+1} \cap \text{Exc}(\varphi_n^+) \). Then we have \(a(X_{n+1}, B_{n+1}; v_0) \leq 1 - c_1 \), hence \(d_n > d_{n+1} \) or \(\sigma_n < \sigma_{n+1} \) also in this case, thus we are done.

References
